\(\int \cos ^{\frac {5}{2}}(c+d x) (A+B \cos (c+d x)) \, dx\) [561]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 21, antiderivative size = 111 \[ \int \cos ^{\frac {5}{2}}(c+d x) (A+B \cos (c+d x)) \, dx=\frac {6 A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {10 B \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {10 B \sqrt {\cos (c+d x)} \sin (c+d x)}{21 d}+\frac {2 A \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {2 B \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{7 d} \]

[Out]

6/5*A*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+10/21*B*(cos(1/2
*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/5*A*cos(d*x+c)^(3/2)*sin(d*x
+c)/d+2/7*B*cos(d*x+c)^(5/2)*sin(d*x+c)/d+10/21*B*sin(d*x+c)*cos(d*x+c)^(1/2)/d

Rubi [A] (verified)

Time = 0.10 (sec) , antiderivative size = 111, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.190, Rules used = {2827, 2715, 2719, 2720} \[ \int \cos ^{\frac {5}{2}}(c+d x) (A+B \cos (c+d x)) \, dx=\frac {6 A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 A \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}+\frac {10 B \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {2 B \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{7 d}+\frac {10 B \sin (c+d x) \sqrt {\cos (c+d x)}}{21 d} \]

[In]

Int[Cos[c + d*x]^(5/2)*(A + B*Cos[c + d*x]),x]

[Out]

(6*A*EllipticE[(c + d*x)/2, 2])/(5*d) + (10*B*EllipticF[(c + d*x)/2, 2])/(21*d) + (10*B*Sqrt[Cos[c + d*x]]*Sin
[c + d*x])/(21*d) + (2*A*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(5*d) + (2*B*Cos[c + d*x]^(5/2)*Sin[c + d*x])/(7*d)

Rule 2715

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Sin[c + d*x])^(n - 1)/(d*n))
, x] + Dist[b^2*((n - 1)/n), Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integ
erQ[2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rubi steps \begin{align*} \text {integral}& = A \int \cos ^{\frac {5}{2}}(c+d x) \, dx+B \int \cos ^{\frac {7}{2}}(c+d x) \, dx \\ & = \frac {2 A \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {2 B \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{7 d}+\frac {1}{5} (3 A) \int \sqrt {\cos (c+d x)} \, dx+\frac {1}{7} (5 B) \int \cos ^{\frac {3}{2}}(c+d x) \, dx \\ & = \frac {6 A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {10 B \sqrt {\cos (c+d x)} \sin (c+d x)}{21 d}+\frac {2 A \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {2 B \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{7 d}+\frac {1}{21} (5 B) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx \\ & = \frac {6 A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {10 B \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {10 B \sqrt {\cos (c+d x)} \sin (c+d x)}{21 d}+\frac {2 A \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {2 B \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{7 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.40 (sec) , antiderivative size = 77, normalized size of antiderivative = 0.69 \[ \int \cos ^{\frac {5}{2}}(c+d x) (A+B \cos (c+d x)) \, dx=\frac {126 A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+50 B \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+\sqrt {\cos (c+d x)} (65 B+42 A \cos (c+d x)+15 B \cos (2 (c+d x))) \sin (c+d x)}{105 d} \]

[In]

Integrate[Cos[c + d*x]^(5/2)*(A + B*Cos[c + d*x]),x]

[Out]

(126*A*EllipticE[(c + d*x)/2, 2] + 50*B*EllipticF[(c + d*x)/2, 2] + Sqrt[Cos[c + d*x]]*(65*B + 42*A*Cos[c + d*
x] + 15*B*Cos[2*(c + d*x)])*Sin[c + d*x])/(105*d)

Maple [A] (verified)

Time = 9.74 (sec) , antiderivative size = 290, normalized size of antiderivative = 2.61

method result size
default \(-\frac {2 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (240 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-168 A -360 B \right ) \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (168 A +280 B \right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-42 A -80 B \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-63 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+25 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{105 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(290\)
parts \(-\frac {2 A \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (-8 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+8 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{5 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}-\frac {2 B \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (48 \left (\cos ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-120 \left (\cos ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+128 \left (\cos ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-72 \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+5 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+16 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{21 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(403\)

[In]

int(cos(d*x+c)^(5/2)*(A+B*cos(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

-2/105*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(240*B*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^8+
(-168*A-360*B)*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)+(168*A+280*B)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+(
-42*A-80*B)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-63*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-
1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+25*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1
/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/
2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 148, normalized size of antiderivative = 1.33 \[ \int \cos ^{\frac {5}{2}}(c+d x) (A+B \cos (c+d x)) \, dx=\frac {2 \, {\left (15 \, B \cos \left (d x + c\right )^{2} + 21 \, A \cos \left (d x + c\right ) + 25 \, B\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 25 i \, \sqrt {2} B {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 25 i \, \sqrt {2} B {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 63 i \, \sqrt {2} A {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 63 i \, \sqrt {2} A {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{105 \, d} \]

[In]

integrate(cos(d*x+c)^(5/2)*(A+B*cos(d*x+c)),x, algorithm="fricas")

[Out]

1/105*(2*(15*B*cos(d*x + c)^2 + 21*A*cos(d*x + c) + 25*B)*sqrt(cos(d*x + c))*sin(d*x + c) - 25*I*sqrt(2)*B*wei
erstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + 25*I*sqrt(2)*B*weierstrassPInverse(-4, 0, cos(d*x + c
) - I*sin(d*x + c)) + 63*I*sqrt(2)*A*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*
x + c))) - 63*I*sqrt(2)*A*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))))/d

Sympy [F(-1)]

Timed out. \[ \int \cos ^{\frac {5}{2}}(c+d x) (A+B \cos (c+d x)) \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**(5/2)*(A+B*cos(d*x+c)),x)

[Out]

Timed out

Maxima [F]

\[ \int \cos ^{\frac {5}{2}}(c+d x) (A+B \cos (c+d x)) \, dx=\int { {\left (B \cos \left (d x + c\right ) + A\right )} \cos \left (d x + c\right )^{\frac {5}{2}} \,d x } \]

[In]

integrate(cos(d*x+c)^(5/2)*(A+B*cos(d*x+c)),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)*cos(d*x + c)^(5/2), x)

Giac [F]

\[ \int \cos ^{\frac {5}{2}}(c+d x) (A+B \cos (c+d x)) \, dx=\int { {\left (B \cos \left (d x + c\right ) + A\right )} \cos \left (d x + c\right )^{\frac {5}{2}} \,d x } \]

[In]

integrate(cos(d*x+c)^(5/2)*(A+B*cos(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)*cos(d*x + c)^(5/2), x)

Mupad [B] (verification not implemented)

Time = 15.23 (sec) , antiderivative size = 87, normalized size of antiderivative = 0.78 \[ \int \cos ^{\frac {5}{2}}(c+d x) (A+B \cos (c+d x)) \, dx=-\frac {2\,A\,{\cos \left (c+d\,x\right )}^{7/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {7}{4};\ \frac {11}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}}-\frac {2\,B\,{\cos \left (c+d\,x\right )}^{9/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {9}{4};\ \frac {13}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{9\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

[In]

int(cos(c + d*x)^(5/2)*(A + B*cos(c + d*x)),x)

[Out]

- (2*A*cos(c + d*x)^(7/2)*sin(c + d*x)*hypergeom([1/2, 7/4], 11/4, cos(c + d*x)^2))/(7*d*(sin(c + d*x)^2)^(1/2
)) - (2*B*cos(c + d*x)^(9/2)*sin(c + d*x)*hypergeom([1/2, 9/4], 13/4, cos(c + d*x)^2))/(9*d*(sin(c + d*x)^2)^(
1/2))